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SUMMARY 
The results of an analysis of low-Reynolds-number turbulent channel flow based on the Karhunen-Lotve 
(K-L) expansion are presented. The turbulent flow field is generated by a direct numerical simulation of the 
Navier-Stokes equations at a Reynolds number Re,= 80 (based on the wall shear velocity and channel half- 
width). The K-L procedure is then applied to determine the eigenvalues and eigenfunctions for this flow. The 
random coefficients of the K-L expansion are subsequently found by projecting the numerical flow field 
onto these eigenfunctions. The resulting expansion captures 90% of the turbulent energy with significantly 
fewer modes than the original trigonometric expansion. The eigenfunctions, which appear either as rolls or 
shearing motions, possess viscous boundary layers at the walls and are much richer in harmonics than the 
original basis functions. Chaotic temporal behaviour is observed in all modes and increases for higher-order 
eigenfunctions. The structure and dynamical behaviour of the eigenmodes are discussed as well as their use 
in the representation of the turbulent flow. 
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1. INTRODUCTION 

Turbulent channel flow has been the subject of numerous investigations because of its simple 
geometry and importance in understanding the turbulence mechanisms of wall-bounded shear 
flows. Recently, direct numerical simulations have made available a detailed knowledge of the 
entire turbulent velocity field. This has enabled orthogonal decomposition methods, which 
require complete and sufficiently resolved data, to be applied in the study of turbulent flows. In 
these methods the turbulent flow field is expanded in terms of the orthogonal eigenfunctions of 
the spatial velocity correlation tensor. This expansion, which is optimal in that it provides the 
most rapidly converging orthogonal expansion in the quadratic mean, is a classical result known 
as the Karhunen-Loeve (K-L) expansion. Its use in the study of turbulence is due to Lumley,1.2 
who proposed it as the basis for a rational and quantitative method of identifying coherent 
structures. 
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The K-L expansion has several important features. It provides a way to extract the underlying 
structure of a turbulent flow, yielding insights to its behaviour. The K-L expansion can be used to 
form a low-dimensional dynamical system to study the chaotic dynamics of turbulent flows. The 
K-L eigenfunctions can also be implemented directly in a numerical scheme, instead of the usual 
trigonometric basis functions. 

Several recent studies have made use of methods based on the K-L expansion. Chambers et aL3 
have investigated its application in the solution of Burgers' equation as a model for turbulence, 
while Sirovich and Rodriguez4 investigated the Ginzburg-Landau system. The K-L decomposi- 
tion has also been applied to a wide variety of numerically simulated turbulent flows, including 
Taylor-Couette flow' and Rayleigh-BCnard convection.6 Two studies have been specifically 
directed towards wall-bounded shear flows. Aubry et d9 modelled the wall region of a turbulent 
boundary layer using experimentally determined eigenfunctions to form a low-dimensional 
dynamical system, while Moin and Moser" applied Lumley's methodology to their numerical 
simulation of turbulent channel flow. 

In this paper the structure and dynamical behaviour of the K-L eigenfunctions, which are 
extracted from a direct numerical simulation of low-Reynolds-number turbulent flow, are 
studied. In contrast to Moin and Moser (who investigated a considerably higher-Reynolds- 
number flow with fine spatial resolution), the temporal behaviour of the eigenfunctions is 
determined directly from the numerical data set (via Galerkin projection) and no assumptions 
regarding phase (such as the 'shot noise effect') are required. 

2. METHODOLOGY 

The analytical approach adopted here follows the programme presented by Sirovich" - l 3  for the 
study of turbulence and the dynamics of coherent structures. These ideas follow from Lumley's 
suggestion of using the eigenfunctions of the two-point velocity correlation tensor to decompose 
the flow into its relevant modes.'.' Details of this approach, as specifically applied to the channel 
flow problem considered here, are given below, as well as relevant details about the numerical 
database. 

2.1. Numerical procedure and data 

The channel flow data analysed in this paper were generated by a direct numerical simulation 
of the Navier-Stokes equations, performed by L. Keefe at the NASA-Ames Research Center (see 
Reference 14 for particular details about the numerical scheme employed). The calculations were 
performed on a 24 x 33 x 12 grid (in x, y, z-the streamwise, wall-normal and spanwise direc- 
tions). This is somewhat on the coarse side but adequate for present purposes, and is sufficient to 
resolve the important features of low-Reynolds-number turbulence such as wall layer streaks. The 
flow statistics (discussed later) are also consistent with other studies of low-Reynolds-number 
turbulence. The streamwise and spanwise directions are taken to be periodic, with a com- 
putational period L, = L, = 1 . 6 ~  (400 wall units). The channel half-width is 6 = 1 (80 wall units). 

The flow simulation has a Reynolds number Re, = 80 based on the wall shear velocity u, and 
the channel half-width. This corresponds to a Reynolds number based on the centreline velocity 
and channel half-width of Re, z 1500. The database consists of N = 500 realizations 

uI.")(x, y, z )  = ui(x, y, z,  nAt), n = 1,2, . . . ,500, 
with a viscous time interval between realizations of At+ = 8*4(v/u:). The three components of 
velocity ui, i = 1, 2, 3, will be denoted as ui = (u, u, w) in the x-, y- and z-directions respectively. 
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The eigenfunction calculation, to be described in the following subsection, is performed using 
the fluctuating components of the velocity field (since these are of primary interest). In fully 
developed turbulent channel flow, only the streamwise velocity has a mean component, which is a 
function of y. Thus the flow can be decomposed into its mean and fluctuating parts as follows: 

where U(y), the local mean velocity, is determined by averaging each realization over horizontal 
planes and time, i.e. 

In this paper, u, u and w (without primes) will be used to denote the fluctuating velocity 
components and an overbar will refer to averaging over the horizontal plane and time, as in (3). 
An average over time alone (ensemble average) will be denoted by angle brackets, i.e. 

l N  
Nn=1 

( u ) = -  1 u("). (4) 

The flow is expanded in Fourier series in the homogeneous directions, while Chebyshev 
polynomials are used in the non-homogeneous vertical direction. Thus the grid is uniformly 
spaced in x and z, while the Chebyshev collocation points 

y,=cos[(i-l)n/32], i= l ,2 , .  . . ,33, ( 5 )  
are used in the y-direction. 

2.2. Karhunen-LoPue expansion 

The two-point correlation tensor or covariance matrix is defined by 

Kij(X, x') = ( Ui(X)Uj(X')). 

Kij(x, X I ) =  K~~(x-x',  y, y', 2-2'). 

(6) 

(7) 

For turbulent channel flow, with two homogeneous directions, (6) takes the form 

This is a consequence of the flow being translationally invariant in the x- and z-directions, i.e. the 
transformations 

T,: u(n)+u(n)(x+l,, y,z) (84 
and 

r,: u(")+u(")(x, y, z+ l , )  

also give admissible flows for any values of i, and I , .  
For a kernel of the form (7), the eigenfunctions have the form 
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where m is the streamwise wave number and n the spanwise wave number. The determination of 
$ i  then follows from 

{I6 dy’Xij(m, n; Y ,  y’)$f(m, n; y’)=A(m, n)$i(m, n; Y), (10) 

where qj is the Fourier transform of K ,  in the homogeneous directions and the asterisk denotes 
the complex conjugate. qj is calculated from the numerical data set by first taking the discrete 
Fourier transform of each realization in the horizontal plane, 

2nimx 2ninz 
tiy)(m, n; y )  = C 1 uy) (x, y, z) exp 

X I  

and then averaging the correlation over the entire ensemble: 

Kij(m, n; Y ,  ~ ’ ) = ( G i ( m y  n; y)fif(m, n; ~ ’ 1 ) .  (12) 
Thus the kernel qj is Hermitian, non-negative and on physical grounds square integrable, so that 
the existence of a complete set of vector eigenfunctions $i(m, n) given by (10) is assured. 

Since the flow field ui(x, y, z)  is real, its Fourier transform is conjugate symmetric, i.e. 

&(m, n; y )  = $( - m, - n; y). (13) 
It is easy to see that this property carries through to the kernel rcij and its eigenfunctions $i .  

Using this approach, an eigenfunction calculation is needed for each horizontal wave number 
pair (m, n). The integral equation (10) is solved numerically using the trapezoidal rule, with the 
transformation y’ = cos 8 employed to account for the non-uniformly spaced Chebyshev grid 
points. The trapezoidal weighting function 0 is applied in such a manner as to preserve the 
symmetry of the kernel ic i j ,  and results in the discrete characteristic value problem 

where 

and 

Y = 0 1 / 2 1 .  (15b) 
Standard numerical eigenvaluew5genfunction routines are used to solve (14), and then the 

inverse transform 

is applied to determine 1. 
In the present problem the dimension of the complex-valued matrix K is dim K = 99 (there are 

three velocity components defined on 33 vertical grid points), so for each wave number pair there 
are 99 eigenvalues and 99 eigenfunctions. These will be ranked so that I 1  > A 2  > . . . > I , , ,  with the 
quantum number q used to specify a particular eigenfunction corresponding to Aq. To completely 
specify a given eigenfunction thus requires a triplet k = (m, n, q). The notation A(m, n, q) = Ak = A:, 
will be adopted for the remainder of this paper. 

The eigenfunctions ~ ( ~ ) ( y ) =  y$,(y) are complex vector-valued functions of y. It is noted that 
the phase and magnitude of an eigenfunction are arbitrary, i.e. an eigenfunction multiplied by any 
complex constant remains an eigenfunction. If the eigenfunctions are normalized to unit length, 

1 =a- 1 / 2 1  (16) 

(&’), #’)) = hkl, (17) 
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then the eigenvalues have the representation 

Ak= (111% #'k'12).  (1 8 )  

This gives the eigenvalue & the interpretation of being the average energy of the flow in the 
direction (in function space) #(k). By summing over all directions, the total mean energy of the flow 
is obtained: 

Once the eigenfunctions have been determined, we may re-represent the flow u in terms of the 
set {Ck)}. This will be discussed in Section 2.5. 

2.3. Incompressibility and boundary conditions 

Since each eigenfunction # can be considered to be an admixture of flow realizations," they 
must satisfy all of the constraints of the problem. In particular, the eigenfunctions must be 
incompressible, 

V.d=O,  (20) 

and they must satisfy the no-slip boundary conditions at the top and bottom channel walls. 

requirement becomes (for each triplet k=(m, n, 4)) 
The boundary conditions simply require that +( y) =O when y = f 6. The incompressibility 

a41 842 a43 

ax ay aZ -+- +-= 0. 

Recalling the form of 4 in (9), this becomes 

where the notation 

is adopted for convenience. 
Since 4 is in general complex-valued, both the real and imaginary parts of (22) must be zero, or 

It will be shown in the next subsection how the incompressibility requirement affects the structure 
of the eigenfunctions. 

2.4. Symmetry considerations 

The full use of the symmetries inherent in a particular problem is essential in this method of 
analysis. Not only can the use of symmetries reduce the number of calculations required, but the 
accuracy of the analysis can be greatly improved. The memory and storage requirements are also 
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reduced significantly, since the symmetries (together with the continuity equation and the real- 
valued velocity field) impart certain properties on the eigenfunctions themselves. The use of 
symmetries as applied in the turbulent channel flow problem is discussed in detail by Sirovich." 
Both continuous (in the form of translational invariances) and discrete symmetry groups are 
considered. The consequences of the former have already been discussed in Section 2.2. In this 
subsection the action of the discrete symmetry group is presented. 

The geometry being considered is invariant under the dihedral group of transformations, D,. 
In particular, the flow is invariant under vertical reflection, 

R, : (x, Y ,  Z, u, u, w)+, - Y ,  Z, u, - v,  4, 

R,  : (x, Y ,  z ,  u, 0, w)+(x,  Y ,  - z ,  u, 0, - w), 

(254 

(25b) 

R,R,: ( x ,Y , z ,u ,u ,  w)+(x,  -Y,  - z ,u ,  -u, - w ) .  (254 

spanwise reflection, 

and rotation about the x-axis, 

Thus, for a given realization, four new flow fields can be produced, extending the size of the 
ensemble used to complete the correlation tensor. 

The extension of the ensemble size through group actions has several consequences. First, it 
greatly improves the statistics of the eigenfunction calculation at no additional expense. The error 
associated with representing any arbitrarily selected flow field as a finite sum of eigenfunctions 
decreases significantly as the size of the ensemble increases. (The number of samples required to 
insure the accuracy of the eigenfunction calculation is related to the dimension of the problem.) 

The second consequence of using symmetries to extend the data set is that those symmetries 
are forced upon the eigenfunctions. Specifically, the eigenfunctions will be symmetric (or anti- 
symmetric) about the midplane of the channel, and the modes with spanwise wave number n 
will be the spanwise reflection of the modes with wave number -n, i.e. 

Also, it has been noted that because these eigenfunctions are used in the expansion of a real- 
valued velocity field, they are conjugate symmetric, i.e. modes with a horizontal wave number pair 
(m, n) are the complex conjugate of the modes (- m, - n). This property, together with the 
symmetries D, , gives the additional (and practical) consequence of reducing the combined 
storage requirements for any given set of eigenfunctions with horizontal wave numbers (Iml, Inl) 
by a factor of eight. Furthermore, eigenfunction calculations are only necessary for positive values 
of (m, n), reducing the computational requirements by a factor of four. 

2.5. Determination of time-dependent coefficients 

eigenfunctions { &,,}, 
As noted in Section 2.2, the flow field u may be re-represented in terms of the set of 

with 
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Taking the above inner product, this becomes 
ra r L x  rL. 

Next, the discrete Fourier transform of u is introduced, together with the factored form of 4 in (9): 

1 Q(m’, n’; y, t)exp ( i ~ 2 ~ ’ x ) e x p ( i ~ ) ] } d z d x d y ,  
m’,n’ 

which simplifies to 

due to the orthogonality of the complex exponential. Thus the determination of the time- 
dependent coefficients U k ( t )  reduces to a single integration in y at each time step. 

From equation (1 8), provided that the eigenfunctions &” have been normalized, the following 
result is obtained: 

(lak(t)l*) =&- (32) 
The coefficients a k (  t )  are in general complex, with at( t )  =afk( t )  (owing to the real-valued 
velocity field from which they are determined). Since these coefficients are determined by 
projecting directly from the flow field, the magnitudes and phase information are completely 
recovered. This method of determining the phase is contrasted to other methods, such as the ‘shot 
noise effect’ used by Moin and Moser,” which do not utilize the complete time-resolved flow to 
extract phase information directly. The storage and memory demands of a large simulation with 
high spatial resolution may make the current method impractical. In order to capture the 
dynamics of the turbulent flow field, the time interval between realizations must be sufficiently 
small (certainly less than the integral time scale). However, with the relatively coarse resolution of 
the simulation used here, the flow could be observed at relatively fine time intervals and the phase 
was recovered without approximation. Symmetries are not used to extend the length of the time 
series, since the group operations do not provide new dynamical information. Thus, unlike the 
eigenfunctions, modes in which m#O and n#O require two separate calculations: one for ak(t) 
and another for a-,(t) (the remaining two modes are the conjugates). 

3. RESULTS 

3.1. Mean properties ofjlow and pow statistics 

The numerical simulation being considered is for low-Reynolds-number turbulent channel flow 
with Re, = 80 (Re, x 1500). At these low Reynolds numbers the flow is only weakly turbulent, but 
there have been several experimental studies showing the existence of sustained turbulence for 
such flows (see e.g. Reference 15). The well-developed logarithmic region of higher-Reynolds- 
number flows is not observed, but the flow does exhibit a chaotic spatial and temporal behaviour. 

The mean velocity profile U(y) is shown in Figure 1 (the velocity field has been non- 
dimensionalized by the wall shear velocity u~) .  A well-developed linear region is clearly observed 
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Mean velocity, i(y) 

Figure 1. Mean velocity profile U(y) 

close to the wall, although the characteristically blunt profile associated with the logarithmic 
region of strongly turbulent flows is absent. If the mean velocity U(y)  is integrated over the 
channel height 26, the bulk mean velocity may be determined: 

For the flow under consideration, urn= 15.1. This is equivalent to the uniform velocity across the 
channel which gives the same mass flux as the actual non-uniform velocity distribution U( y ), and 
is marked on Figure 1 for reference. 

If the bulk mean velocity is calculated for each realization, then its variation with time can be 
shown as in Figure 2. This shows the fluctuations in the mean velocity profile about the time- 
averaged value u,=15.1. From Figure 2 it is observed that the mass flow rate is initially 
decreasing, then increases over a long period of time before beginning to decrease again. In other 
words, the mean velocity profile U(y )  is undergoing alternate periods of contraction and 
expansion. 

Periods of contraction correspond to periods of increased turbulent activity, with a greater 
momentum flux from the wall region. Conversely, periods of expansion in the mean velocity 
profile correspond to decreased levels of turbulence. Evidence for this is provided in Figure 3, 
where the rate of change in the bulk mean velocity, (d/dt)u,(t), is compared with the average level 
of the Reynolds shear stress, G(t). A close correlation is observed between the two curves, as 
expected. 

Finally, the root-mean-square velocity fluctuations across the channel are shown in Figure 4. 
A fairly strong peak in the streamwise fluctuations occurs near each wall, at ~ ' ~ 1 5 .  This 
corresponds to the location of the maximum turbulence production, i.e. - uu( &/lay). The 
spanwise fluctuations show a weaker peak near y + z 27, while the vertical fluctuations are 
fairly flat throughout the centre of the channel. 

- 
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Figure 2. Variations in bulk mean velocity urn([') 

10.0 

593 

Figure 3. Comparison of the rate of change in the bulk mean velocity with the average level of Reynolds shear stress 
(variables are scaled by their maximum values): . . . . . , JuuJ; -, -du,/dt+ 

3.2. Eigenvalue spectrum 

As discussed in Section 2.2, the total mean energy in the flow is given by the sum of the 
eigenvalues (19). Thus each eigenvalue ;1~ gives the fraction of the total energy of the eigenfunction 
associated with it, #(k). By ordering the eigenvalues from largest to smallest, the number of 
eigenfunctions, N ,  needed to capture a given percentage of the total flow energy in a finite 



594 K. S. BALL, L. SIROVICH AND L. R. KEEFE 

Distance in wall units. y+ 
x O . O  20.0 40.0 80.0 80.0 (10.0 40:O 20.0 

(34) 

Wall-normal position. Y 

Figure4. Root-mean-square velocity fluctuations across the channel: -, ti,,,; ---, v,,,; . ... . , w,,, 

representation of the flow 

is minimized. In the above representation, k is used as an index for the ordered eigenfunction #k), 

Table I shows the first 25 eigenfunctions, with the respective energy content and degeneracy for 
each mode (it is recalled that the symmetries in the problem force certain degeneracies on the 
eigenfunctions; see Section 2.4). More than half of the energy lies in the first 10 modes (including 
degeneracies), while over 70% of the energy is captured by the first 25 modes. 

In Figure 5 the fraction of energy retained by any finite approximation of the flow is given. One 
of the properties of the Karhunen-Loeve expansion discussed earlier is that it provides the 
optimal choice of approximating functions in terms of energy content. Thus a finite expansion of 
the flow field in terms of any other basis would be expected to contain a smaller fraction of energy 
for the same number of terms. For the Chebyshev-Fourier (C-F) expansion used in the original 
numerical computations this is indeed the case. The lower curve in Figure 5 corresponds to the 
C-F expansion and was generated by selecting the Chebyshev and Fourier modes in the order 
that maximizes the total energy obtainable for a given level of truncation. For approximations 
with fewer than 50 terms, the K-L eigenfunctions capture nearly twice as much energy as the C-F 
expansion. In the range 50,< N < lo00 the K-L expansion is still significantly better, but for 
N 2 1000 the advantage decreases, although at a slow rate. This is because the higher-order K-L 
eigenfunctions become more similar in form to the C-F functions, an indication that there are no 
significant structures (in terms of energy content) remaining to be resolved in the flow. 

The number of K-L eigenfunctions needed to represent the flow accurately (as measured by the 
energy norm) can be considered as an indication of the intrinsic dimension of the space. The 
usefulness of a K-L dimension d,, as an estimate of attractor dimension is discussed by 
Sirovich16 and has been applied in several other s t~d ie s .~ ,  '* l 7  As defined in these studies, d,, is 

with & > A k + l .  
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Table I. Summary of eigenvalue calculation, first 25 values 

Energy 
Index m n q Eigenvalue Degeneracy (fraction of total) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0 1 1  
0 2 1  
0 3 1  
0 2 2  
0 1 2  
0 3 2  
1 3 1  
0 0 1  
1 3 2  
0 1 3  
1 2 1  
0 0 2  
1 2 2  
0 1 4  
0 2 3  
1 1 1  
1 1 2  
1 2 3  
0 0 3  
1 3 3  
1 3 4  
2 3 1  
1 1 3  
0 3 3  
0 3 4  

0.22671 
0 15234 
0.12774 
0.12077 
0.07383 
0.07 125 
0.02857 
0.10663 
0.02324 
0.03279 
0.01367 
0.05 141 
0.01195 
0.021 1 1 
0.02095 
0.00932 
0.00907 
0.00710 
0.02783 
0.00670 
0.00630 
0.00620 
000609 
0.01204 
0.01173 

2 
2 
2 
2 
2 
2 
4 
1 
4 
2 
4 
1 
4 
2 
2 
4 
4 
4 
1 
4 
4 
4 
4 
2 
2 

0.1300 
0.0874 
0.0732 
0.0693 
0.0423 
0.0408 
0-0327 
0.0305 
0.0266 
00188 
0.0156 
00147 
00137 
00121 
0.0 1 20 
00107 
00104 
00081 
00079 
00076 
00072 
00071 
00069 
00069 
00067 

Number of modes 

Figure 5. Fraction of energy retained in the Karhunen-Loeve expansion (-) compared to the Chebyshev-Fourier 
expansion (- - -) 
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the number of eigenfunctions required so that the captured energy is at least 90% of the total and 
so that no neglected mode, on average, contains more than 1% of the energy contained in the 
principal eigenfunction mode. In the present case, d,, = 380 (degeneracies have been included in 
the count). It is noted that this informal dimension is of the same order as the Lyapunov 
dimension d ,  estimated by Keefe and Moin'* for this flow using the Kaplan-Yorke procedure, 
which is d, x 352. 

3.3. Structure of eigenfunctions 

In this subsection the spatial structure of three typical eigenfunctions which are representative 
of the entire set {&,,,> is discussed. Recalling that the dependence of the eigenfunctions is 
factorizable (equation (9)), the vertical structure of each eigenfunction &( y) is presented first, 
followed by the three-dimensional form of each mode. The spatial structure of the eigenfunctions 
in the homogeneous horizontal directions is sinusoidal. This results in a roll structure, as in 
elongated vortices with axes parallel to the horizontal plane. The axis orientation for any given 
mode is determined by the horizontal wave numbers m and n. As exceptions to this roll structure, 
some modes appear as shearing motions and will be discussed in further detail later. 

In these figures the three components of v;,, corresponding to u, v and w are assembled as real- 
valued functions. As discussed in Section 2.4, there is a degeneracy associated with each mode due 
to the symmetries in the problem. By summing over these degeneracies, the real-valued function is 
obtained (recall that the kernel K~~ in (12) is Hermitian). The eigenfunctions for each mode have 
been scaled by the maximum absolute value achieved across the channel, maintaining the correct 
relative scaling between $1 ,  $2 and $ 3 .  (The relative scaling between different modes is given by 
the ratio of their respective eigenvalues and is not shown.). 

Some general observations can be made about the eigenfunctions. First, it is readily observed 
that they satisfy the no-slip boundary conditions at the walls and possess viscous boundary 
layers. In particular, the vertical gradient of t,h2, a$Jdy, is zero, as required to satisfy continuity. 
The eigenfunctions are also symmetric (or antisymmetric) about the midplane. As a consequence, 
$1 and $2 have opposite parities: when t j 1  is odd, $2 is even and when $1 is even, $2 is odd. 
Finally, the eigenfunctions are rich in higher harmonics, with a significant structure in the wall 
regions. The centre of the channel, by contrast, is relatively flat. The higher-order eigenfunctions 
are also observed to have generally more zero crossings, which increase in number with the 
vertical quantum number q. 

The first eigenfunction considered has the quantum number triplet k = (m, n, q) = (0,1,1). This is 
the most energetic mode, i.e. it has the largest eigenvalue. Its vertical structure is shown in 
Figure qa). The streamwise component t+bl dominates this mode, with the maximum amplitude of 
J13 being less than 15% of $l,max, while $2,max is approximately 10% of $l ,max.  $ l (y)  and 
$3(y) have fairly strong peaks near the wall, at y +  x29 and y +  x 2 3  respectively. The vertical 
component of the eigenfunction, $2,  shows little structure, in contrast to A vector plot 
showing the roll structure of this mode in the y-z plane is shown in Figure qb). The rolls appear 
in counter-rotating pairs, and the incompressible nature of the vector field is apparent. All of the 
modes with m = 0 and n # 0 have forms qualitatively similar to the first eigenfunction of Figure 6. 

The next mode, shown in Figure 7, is for k = (1,3,1). This mode also has strong peaks near the 
walls and is relatively flat in the centre. However, in this mode the maximum value of $ 3  is nearly 
40% of $ l , m a x ,  and $2,max is roughly 20% of This mode is aligned at an angle 
8 = tan- (1/3) to the streamwise direction x and carries relatively more energy in the spanwise 
direction. The roll structure of this mode is shown in the vertical plane normal to the roll axis 
given by 8. 

and 
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+ 
x 

Distance in wall unlts. y' 

. 
- - - - - - . _ _ _ * _ _ _ _ _  

Wall-normal position. y 

, . . .  
0.0 ldO.0 . 

. . .  
260.0 

+ Z 

. . .  
3d0.0 4d0.0 

Figure6. Spatial structure of the eigenfunction with k=(O, 1, 1): (a)vertical structure $')(y) (-, JI,;  ---, J 1 2 ;  
. . . . . , J 1 3 ) ;  (b) plane cross-section normal to roll axis 

Finally, the mode k=(O, 0, l), shown in Figure 8, is observed to have only a streamwise 
component This mode carries information about the mean flow. Since the only mean 
component in the flow is in the streamwise direction (equation (2)), $z = $j =O. The profile of 
has a relative maximum at roughly y+  x 9  and a zero crossing near y+  x 16. It is relatively flat in 
the centre of the channel. Thus this mode has the primary effects of modifying the mean velocity 
gradient aii/lay in the wall region of the flow, with an accompanying contraction or expansion in 
the mean velocity profile. Thus the modes with m = n = 0 are observed to be the mechanism for the 
temporal variations in u, discussed in Section 3.1. In Figure 8(b) this mode is observed to be one 
of the shearing modes mentioned earlier. The other notable exception to the roll structure occurs 
in some modes with n = 0 (and m # 0). These modes have an orientation that is perpendicular to 
the direction of mean flow, i.e. they are aligned in the spanwise direction z.  Hence they can only 
extract energy from the mean flow and are termed parasitic. 
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Figure7. Spatial structure of the eigenfunction with k=(l,  3, 1): (a)vertical structure, y@)(y )  (-, ---, $2; . . . . . , $3); (b) plane cross-section normal to roll axis 

The predominant roil structure of the most energetic eigenfunctions is an important result. It 
gives the interpretation of elongated vortices to those modes possessing rolls, which provides a 
mechanism for the transport of fluid away from (or towards) the channel walls. Such a mechanism 
must be present in order to allow for turbulent ‘bursts’ or ‘sweeps’. Furthermore, the momentum 
exchange associated with streamwise vortices are responsible for the existence of high- and low- 
speed streak regions in the boundary layers. The role of the shearing modes is not completely 
understood, but these modes may be related to the instabilities in the flow, providing a 
mechanism for the exchange of energy within the flow. 

3.4. Modal reconstruction of flow 

In Section 2.5 the reconstruction of the instantaneous flow field u(x, t )  by a finite expansion 
using the K-L eigenfunctions was discussed. The optimal nature of the K-L expansion in terms of 
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Figure 8. Spatial structure of the eigenfunction with k=(O, 0, 1): (a) vertical structure, ~ ( ~ ) ( y ) ;  (b) plane cross-section in 
direction of shear 

the percentage of the total energy captured has been demonstrated. By introducing (27) into the 
definition of the correlation (6) and recalling that the modes are uncorrelated, the following result 
is obtained: 

( ui (x) u j ( x ) )  = 1 Ak 4 jk)(X) 4 p'* (x). (35) 
k 

Thus the contribution of each eigenfunction to the turbulent kinetic energy and Reynolds shear 
stress can be determined. In this subsection the effectiveness of using the K-L expansion to 
reproduce the second-order statistics of the flow field is presented. 

In Figures 9-1 1 the convergence of the K-L expansion for the root-mean-square velocity 
fluctuations across the channel are shown as the number of terms N in the expansion is increased. 
In all three cases the eigenfunction expansion provides a better approximation to the actual 
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Figure 9. Convergence of the Karhunen-Loeve expansion for the root-mean-square streamwise velocity fluctuations: 
--_ , N = l ; - . - ,  N = l O - - -  1 )  N=100 ,..... , N = 500, -, exact 
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Figure 10. Convergence of the Karhunen-Loeve expansion for the root-mean-square spanwise velocity fluctuations: 
_-- , N=l;-- .-- ,  N=10;---, N=100; ..... , N=500;--,exact 

profile nearer to the walls than to the centre of the channel. This is particularly evident for the 
lower-order approximations. The actual profile is also observed to be approached entirely from 
below, i.e. the higher-order terms all make positive contributions to the energy. 

In Figure 12 the convergence of the Reynolds shear stress is shown. As before, the K-L 
expansion provides a better approximation in the wall region with the lower-order terms. 
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Figure 11. Convergence of the Karhunen-Loeve expansion for the root-mean-square wall-normal velocity fluctuations: 
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Figure 12. Convergence of the Karhunen-Loeve expansion for the mean Reynolds shear stress: , N = l ;  
--.-,N=10;---, N = l W  ,....., N=500;-,exact 

However, the approximation with N = 500 terms is observed to be nearly identical to the actual 
profile. Furthermore, the approximation with N = 100 terms shows a greater level of stress at 
every vertical location. Thus there are negative contributions to the Reynolds shear stress as well 
as positive contributions at higher orders. 
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3.5. Time series and dynamics 

The time course of the power for the three modes discussed in Section 3.3, (ak(t)12, is shown in 
Figures 13- 15. The time-dependent coefficients at( t )  were obtained by projecting the velocity 
field u(x, t) onto the eigenfunctions as outlined in Section 2.5. The mean power for each mode, 
given by (32), is also shown. The modes display varying degrees of chaos, which seems to increase 
in the higher-order modes; Fairly large excursions from the mean are also to be noted. 

Time. t+ 

Figure 13. Time series for the eigenfunction with k=(O, 1, 1): the horizontal line is the eigenvalue for this mode; 
-, la(t+)I*; ..... , w 

Time. t’ 

Figure14. Time series for the eigenfunction with k = ( l ,  3, 1): the horizontal line is the eigenvalue for this mode; 
-, ( a ( t + ) ( * ;  ..... , w 
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nme. t+ 

Figure 15. Time series for the eigenfunction with k=(O, 0, 1): the horizontal line is the eigenvalue for this mode 

Also shown in Figures 13 and 14 is the time variation in phase for each mode (note that the 
(0, 0, 1) mode of Figure 15 is a real function-see Section 2.4-and has no phase). As noted in 
Section 2.5, the phase information is recovered completely by the projection of equation (28). In 
the figures the phase (shown in radians) is displayed as a smoothly varying function of time and is 
not constrained to the interval [ - x ,  711. 

For the modes with m=O, such as in Figure 13, qualitatively similar results are obtained. The 
amplitude variation appears to be dominated by lower frequencies, with higher-frequency 
motions superimposed. As the mode order increases, the higher frequencies become more visible. 
The phase, in contrast with the amplitude, meanders in a single direction for much longer periods 
of time, with higher-frequency variations carried along. 

The modes with m # 0 and n #O, such as in Figure 14, show a higher degree of complexity in the 
amplitude than the other modes. This is perhaps a reflection of the influence of the smaller scales 
of motion present in these modes. The phase is also observed to be dramatically different in these 
modes, having a nearly constant rate of change with time throughout the entire plot. This is 
suggestive of an oblique wave travelling with a characteristic speed through the channel, which 
may play an important role in the local production of turbulence. This issue is fully discussed in 
another paper.Ig 

The significance of the mode k = (0, 0, 1) has already been discussed in other sections of this 
paper. It is associated with time variations in the mean velocity U(y). It is interesting to note that 
its amplitude variation is very closely related to the variation of u,(t) shown in Figure 2. 

4. CONCLUSIONS 

The use of the Karhunen-Loeve expansion in the analysis of turbulent channel flows has been 
presented. The methodology followed in this study has been described in detail, providing a 
complete prescription for the determination of the K-L eigenfunctions and their corresponding 
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time-dependent coefficients. Particular emphasis has been placed on making full use of the 
symmetries inherent in the problem. 

The results presented show the structure of the eigenfunctions for a low-Reynolds-number 
turbulent channel flow. The accuracy associated with using the K-L expansion to represent the 
flow field is demonstrated in terms of the percentage of total energy captured and the ability to 
approximate the second-order statistics of the flow. Finally, the dynamical behaviour of the 
eigenfunctions is discussed. 

The eigenfunctions together with their time-dependent coefficients have provided the frame- 
work for further analysis of this flow. Current investigations into the role of travelling plane waves 
and shearing motions associated with certain modes are under way. Also, similarities between the 
K-L eigenfunctions and the Orr-Sommerfeld eigenfunctions are being studied. Finally, a 
parametric study of the Reynolds number dependence of the K-L eigenfunctions is being 
conducted, in part to evaluate their potential when used as basis functions in spectral simulations. 
These results will be reported in later papers. 
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